

Pneumatic Rotary Actuators

PRO-PRN Series

Rotary actuators are an efficient and easy way to generate torque from compressed air, in a very compact size. They are ideal for the compact applications in a wide range of industries such as, packaging, process, electronics etc.

Wide range

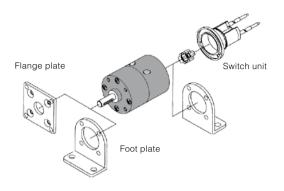
A full range of 9 sizes is available, the 8 largest sizes are single or double vane type (with double effective torque). For the PRN High Torque, a series of customized cushion units (CRN) are available for high energy applications.

Easy-to-use oscillating angles

Two oscillation reference points of 45° and 90° and three oscillating angles of 90° 180° and 270° are featured on the PRN ranges to match the most frequently uses. On the PRO range, the oscillation angle can be adjusted to the exact requirement.

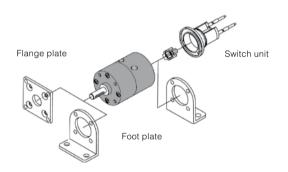
Stable operation

The unique sealing design minimises leakages. It assures low speed oscillation and stable, smooth operation even at low operating pressures and speeds.

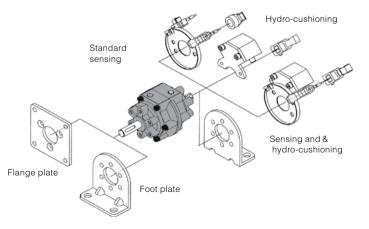

Durability to high operating temperatures

Dry dehumidified air may supply the rotary actuators within operating temperature range of -5°C to 80°C (PRN range -5°C to +60°C).

Outstanding durability


A solid vane shaft and built-in damper are combined with a unique sealing design to ensure outstanding durability. PRN50 and higher models are able to operate much greater loads with the incorporation of a Hydro-cushion.

PRO Miniature Rotary Actuators (adjustable oscillating angle)

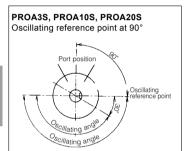

Vane	Model	Effective torque
Single vane	PROA3S PROA10S PROA20S PRO30SE	(N.cm at 6 bar) 38 120 210 410
Double Vane	PROA3D PROA10D PROA20D PRO30DE	86 254 470 950

PRN Miniature Rotary Actuators (fixed oscillating angle)

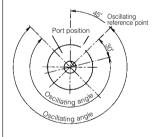
Vane	Model	Effective torque (N.cm at 6 bar)
	PRNA1S	15,6
	PRNA3S	38
Single	PRNA10S	120
vane	PRNA20S	210
	PRN30SE	410
	PRNA1D	34,7
	PRNA3D	86
Double	PRNA10D	254
Vane	PRNA20D	470
	PRN30DE	950

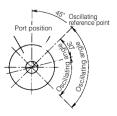
PRN High Torque (fixed oscillating angle)

Vane	Model	Effective torque
		(N.cm at 6 bar)
	PRN50SE	590
Single	PRN150SE	1800
vane	PRN300SE	3450
	PRN800SE	12300
	PRN50DE	1280
Double	PRN150DE	4150
Vane	PRN300DE	8300
	PRN800DE	24700



PRO Miniature series - Adjustable oscillating angle - Order Codes


Standard models


Oscillation starting point and oscillation angle

PRO30SE Oscillating reference point at 45°

PROA3D, PROA10D, PROA20D, PRO30DE J& Oscillating reference point at 45°

Order code Torque at 6 bar (N.cm) Oscillating angle Single vane PROA3S-0-90 38 30 to 180° PROA10S-0-90 120 30 to 180° PROA20S-0-90 210 30 to 180° PRO30SE-0-45 410 30 to 270° Double vane PROA3D-0-45 86 30 to 90° PROA10D-0-45 254 30 to 90° PROA20D-0-45 470 30 to 90° 30 to 90° PRO30DE-0-45 950

Note: Rotary actuators with variable oscillating angle are shipped with fixed reference point stopper. The angle setting stopper is attached but not fixed. This must be fixed securely before use.

Rotary Actuator mountings

For Rotary Actuator	Flange mounting	Foot mounting
PROA3S/D	PRN3-P	PRN3-L
PROA10S/D	PRN10-P	PRN10-L
PROA20S/D	PRN20-P	PRN20-L
PRO30SE/DE	PRN30-P	PRN30-L

The mountings are provided with set screws

Switch units

Variable switch position, solid state NPN or PNP.

For Rotary Actuator	NPN	PNP	
PROA3S/D	FR-3PRO	FP-3PRO	
PROA10S/D	FR-10PRO	FP-10PRO	
PROA20S/D	FR-20PRO	FP-20PRO	
PRO30SE/DE	FR-30PRO	FP-30PRO	

Protective cover and stopper unit

For Rotary Actuator	Protective cover	Stopper unit	
PROA3S/D	PRO3-K	RO3-U	
PROA10S/D	PRO10-K	RO10-U	
PROA20S/D	PRO20-K	RO20-U	
PRO30SE/DE	PRO30-K	RO30-U	

Maintenance kits

The maintenance kit consists in the vane shaft, shoe seal and shaft O'rings

For Rotary Actua	tor Single vane		Double vane	
PROA3S	PRNA3S-PS	PROA3D	PRNA3D-PS	
PROA10S	PRNA10S-PS	PROA10D	PRNA10D-PS	
PROA20S	PRNA20S-PS	PROA20D	PRNA20D-PS	
PRO30SE	PRN30S-PS	PRO30DE	PRN30D-PS	

PRO Miniature series - Adjustable oscillating angle - Technical data

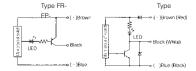
Technical specification

PRO Rotary Actuators	Unit	PROA3S	PROA10S	PROA20S	PRO30SE
Vane		Single vane			
Air condition	0		ricated or non-lubric		
Oscillating angle	-	30 to 180	30 to 180	30 to 180	30 to 270
Oscillating reference point	0	90	90	90	45
Port size		M5	M5	M5	G1/8
Minimum operating pressure	bar	1,0	1,0	0,8	1,0
Operating pressure	bar	2 to 7	2 to 7	2 to 10	2 to 10
Operating temperature	°C	-5 to 80	-5 to 80	-5 to 80	-5 to 60
Maximum operating frequency	cycles/mn	150 (at 180°)	150 (at 180°)	120 (at 180°)	90 (at 270°)
Internal volume	cm ³	4	12	21	43
Allowable radial load	N	40	50	300	400
Allowable thrust load	N	4	4	25	30
Allowable energy	mJ	1	2	3	7
Weight	kg	0,085	0,170	0,280	0,510
PRO Rotary Actuators	Unit	PROA3D	PROA10D	PROA20D	PRO30DE
Vane		Double vane			
Air condition		Filtered (5µ) lub	ricated or non-lubric	ated	
Oscillating angle	0	30 to 90	30 to 90	30 to 90	30 to 90
Oscillating reference point	0	45	45	45	45
Port size		M5	M5	M5	G1/8
Minimum operating pressure	bar	0,7	0,7	0,6	0,8
Operating pressure	bar	2 to 7	2 to 7	2 to 10	2 to 10
Operating temperature	°C	-5 to 80	-5 to 80	-5 to 80	-5 to 60
Maximum operating frequency	cycles/mn	240 (at 90°)	240 (at 90°)	180 (at 90°)	180 (at 90°)
Internal volume	cm ³	2,8	8,1 ` ′	15 ` ´	34
Allowable radial load	Ν	40	50	300	400
Allowable thrust load	Ν	4	4	25	30
Allowable energy	mJ	1	2	3	7
Weight	kg	0,087	0,180	0,290	0,530

Notes:

- The allowable energy differs from that of PRN series.
- Maximum operating frequency is given at 5 bar operating pressure (unloaded).
- Make sure to use the PRO rotary actuators within the allowable energy. Check if the required energy is lower than the allowable energy. If not, use end stoppers directly on the load.
- The PRO with keyways are provided with keys.

Materials specification

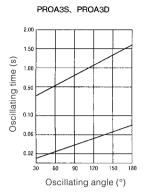

PRO	PROA3, PROA10, PROA20	PRO30
Body	Aluminium alloy	Aluminium alloy
Solid vane shaft	Steel + resin + Hydr. Nitrile	Steel + resin + Nitrile
Shoe	Resin	Resin
Shoe seal	Hydrogenated Nitrile	Nitrile
O-ring	Hydrogenated Nitrile	Nitrile
Screws, claw, stoppers, locknut	Steel	Steel

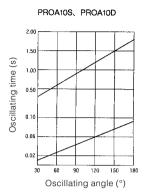
Effective torque (N.cm)

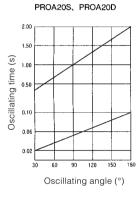
Operating pressure (bar)									
Model n°	2	3	4	5	6	7	8	9	10
Single van	e								
PROA3S	10	17	24	31	38	45	-	-	-
PROA10S	35	56	75	98	120	139	-	-	-
PROA20S	59	95	133	170	210	249	287	326	368
PRO30SE	110	180	250	319	410	480	580	650	720
Double var	ne								
PROA3D	25	39	54	71	86	101	-	-	-
PROA10D	76	117	162	211	254	303	-	-	-
PROA20D	140	222	306	388	470	553	633	717	807
PRO30DE	270	440	600	770	950	1120	1299	1480	1660

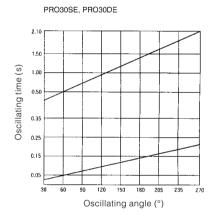
Switch units specification

Switch unit type	FR-	FP-
Application	Relay, PLC,	IC circuit
Output method	NPN	PNP
Mounting	Switch posit	tion adjustable
Operating voltage	DC5~30V	DC10~30V
Operating curren	t 5 to 200mA	5 to 200mA
Indicating lamp	Lights up a	t ON Consumption
20mA at	24V	14mA at 24V
10mA at 12V	7mA at 12V	4mA at 5V
Max.leakage curr	ent	10 μΑ
Internal voltage d		1,5 V
Average operating	g time	1 ms
Shock resistance		490m/s ²
Operating temper	ature	5 to 60°C
Protection		IP67
Lead wire	1 m, 3 core	, oil resistant
Response range		23°±7°
Hysteresis		Approx. 2°

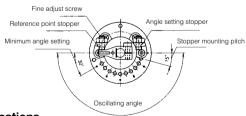





PRO Miniature series - Adjustable oscillating angle - Technical data (cont)


Oscillating time range

Note: The PRO rotary actuators must be operated within the range of the charts shown; otherwise, they exhibit a stick-slip motion.

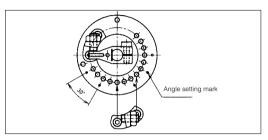


Setting the oscillation angle

The rotary actuators are delivered with the reference point stopper fixed and the angle setting stopper non fixed. The angle setting stopper has to be set in position according to the angle required, it can be attached at intervals of 15°.

Oscillating angle setting and external stopper specifications

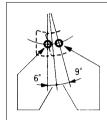
Model n°	PROA3S	PROA10S	PROA20S	PRO30SE	PROA3D	PROA10D	PROA20D	PRO30DE
Oscillation angle setting range	30 to 180°	30 to 180°	30 to 180°	30 to 270°	30 to 90°	30 to 90°	30 to 90°	30 to 90°
Oscillating reference point	90°	90°	90°	45°	45°	45°	45°	45°
Minimum angle setting	30°	30°	30°	30°	30°	30°	30°	30°
Maximum angle setting	180°	180°	180°	270°	90°	90°	90°	90°
Pitch for angle setting	15°	15°	15°	15°	15°	15°	15°	15°
Fine adjustment range								
Angle	-9° to +6°	-9° to +6°	-9° to +6°	-9° to +6°	-9° to +6°	-9° to +6°	-9° to +6°	-9° to +6°
Oscillating ref point	±3°	±3°	±3°	±3°	-1° to +3°	±3°	±3°	±3°
At max angle setting	-9° to +6°	-9 $^{\circ}$ to +6 $^{\circ}$	-9° to +6°	-9° to +3°	-9° to +1°	-9° to +3°	-9° to +3°	-9° to +3°



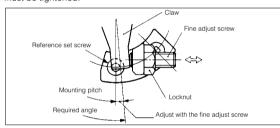
PRO Miniature series - Adjustable oscillating angle

Setting the oscillation angle (cont.)

When the angle setting equals the stopper mounting pitch


1. Place the stopper into the tapped hole corresponding to the intended angle and fix it. When mounting the stopper, use the angle setting marks provided every 30°, near the tapped hole.

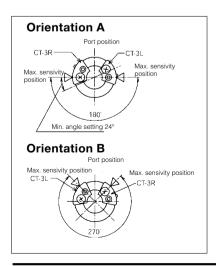
2. Then, rotate the fine adjust screws on the reference point stopper and the angle setting stopper until the correct angle is obtained. After completing the angle setting, the locknut must be tightened.


When the angle setting lies between two 15° stops

1. When the required angle lies between two 15° stops, fix the stopper into the tapped holes as shown in the diagram herebelow.

When the required angle is located in the 6° side (from the reference point), insert the stopper making contact with the set screw on this side. When the required angle is located in the 9° portion, insert the stopper making contact with the set screw on the other side (from the reference point).

2. Then, rotate the fine adjust screw fitted to the stopper to obtain the required angle. After completing the angle setting, the locknut must be tightened.

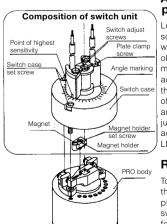


Switch mounting orientation

The 2 types of switches (-3L and -3R) included in the switch unit have to be oriented in accordance to the table and diagrams herebelow:

Oscillating angle

Orientation of switches 30° to 186° 187° to 270° В



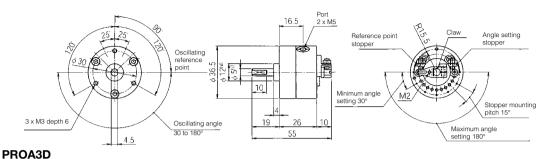
Setting the switch position

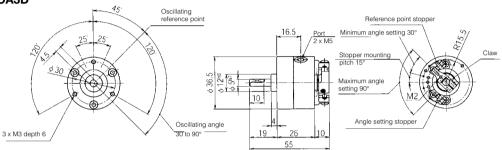
Mount the switch unit on the body using the set of screws. For clamping torque, refer to the table below

Model Clamping torque (N.cm) PROA3S/D 6 to 10 10 to 20

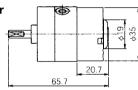
PROA10S/D PROA20S/D and PRO30SE/DE 20 to 30

Adjusting the switch: & position

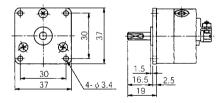

Loosen the switch adjust screws, make the point, at which the highest sensitivity is obtained, match with the angle marking equivalent to the actuator setting, and retighten the switch adjust screws torque of 40 to 50 N.cm. Since the angle markings are provided just for reference, make a final adjustment by checking if the LED is on.

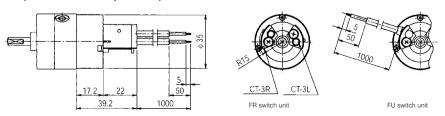

Replacing the switch

To remove the switch, remove the switch adjust screws and plate clamp screw. To mount a switch, reverse the procedure for removal. Adjust the switch position after completion of mounting.



PRO Miniature series - Adjustable oscillating angle - Dimensions (mm) PROA3S

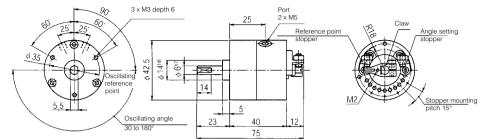

With protection cover


With foot plate mounting 16.4 2.6 12.7 2.6 2.6 3.6 2.6 4.8 7.11 18

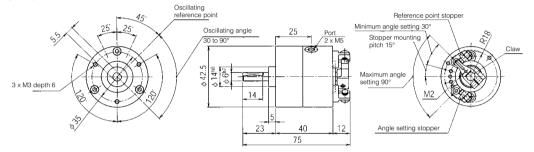
Note : A foot plate can be fitted turned by steps of 60° from the original position

With flange plate mounting

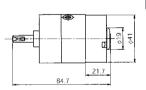
Note: A flange plate can be fitted turned by steps of 120° from the original position



Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.

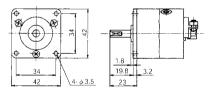


PRO Miniature series - Adjustable oscillating angle - Dimensions (mm)

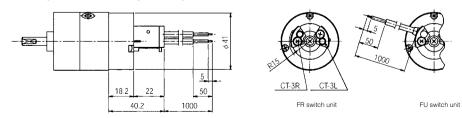

PROA10S

PROA10D

With protection cover

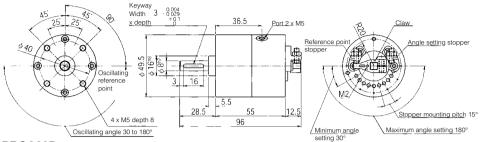


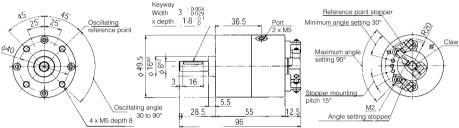
With foot plate mounting

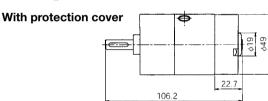


 $\textbf{Note:}\ A$ foot plate can be fitted turned by steps of 60° from the original position

With flange plate mounting

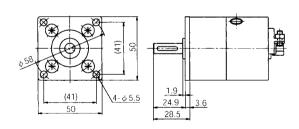

Note: A flange plate can be fitted turned by steps of 120° from the original position

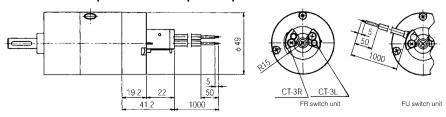

Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.



PRO Miniature series - Adjustable oscillating angle - Dimensions (mm) PROA20S

PROA20D

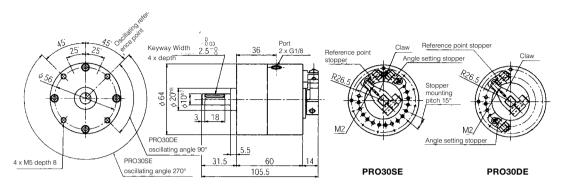



With foot plate mounting

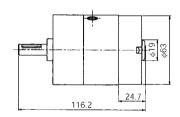
25 3.6 18.7 10 15 49 2-67 25

With flange plate mounting

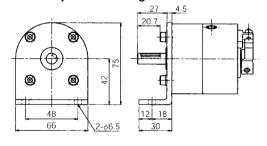
Note: A foot plate can be fitted turned by steps of 90° from the original position

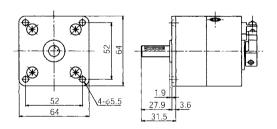


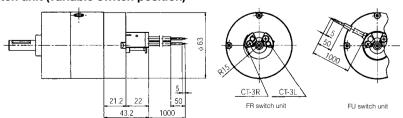
Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.



PRO Miniature series - Adjustable oscillating angle - Dimensions (mm)


PROA30SE & DE


With protection cover


With foot plate mounting

With flange plate mounting

Note : A foot plate can be fitted turned by steps of 60° from the original position

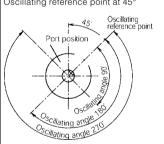
Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.

PRN Miniature series - Fixed oscillating angle - Order Codes

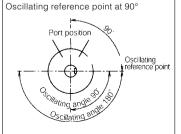
Standard models

Single vane PRNA1S PRNA3S PRNA10S PRNA20S	Torque 6 bar (N.cm) 15,6 38 120 210	Oscillating angle 90° PRNA1S-90-90 PRNA3S-90-90 PRNA10S-90-90 PRNA20S-90-90	180° PRNA1S-180-90 PRNA3S-180-90 PRNA10S-180-90 PRNA20S-180-90		Oscilla referer	_	oint
PRN30SE	410	PRN30SE-90-45	PRN30SE-180-45	PRN30SE-27	0-45	Χ	
Double vane)						
PRNA1D	34,7	PRNA1D-90-45				Χ	
PRNA3D	86	PRNA3D-90-45				Χ	
PRNA10D	254	PRNA10D-90-45				Χ	
PRNA20D	470	PRNA20D-90-45				Χ	
PRN30DE	950	PRN30DE-90-45				Χ	

Rotary Actuator mountings


Rotary Actuator	Flange mounting	Foot mounting
PRNA1S/D	PRN1-P	PRN1-L
PRNA3S /D	PRN3-P	PRN3-L
PRNA10S/ D	PRN10-P	PRN10-L
PRNA20S/D	PRN20-P	PRN20-L
PRN30SE/DE	PRN30-P	PRN30-L

The mountings are provided with set screws


Oscillation starting point and oscillation angle

PRNA1D, PRNA3D, PRNA10D PRNA20D, PRN30SE/DE

Oscillating reference point at 45°

PRNA1S, PRNA3S, PRNA10S, PRNA20S

Switch units

Variable switch position, solid state NPN or PNP.

For Rotary Actuator	NPN	PNP
PRNA1S/D	FR-1PRNA	FP-1PRNA
PRNA3S/D	FR-3PRNA	FP-3PRNA
PRNA10S/D	FR-10PRN	FP-10PRN
PRNA20S/D	FR-20PRN	FP-20PRN
PRN30SE/DE	FR-30PRN	FP-30PRN

Maintenance kits

The maintenance kit consists in the vane shaft, shoe seal and shaft O'rings

For Rotary Actuator

Single vane		Double vane	
PRNA1S	PRNA1S-PS	PRNA1D	PRNA1D-PS
PRNA3S	PRNA3S-PS	PRNA3D	PRNA3D-PS
PRNA10S	PRNA10S-PS	PRNA10D	PRNA10D-PS
PRNA20S	PRNA20S-PS	PRNA20D	PRNA20D-PS
PRN30SE	PRN30S-PS	PRN30DE	PRN30D-PS

PRN Miniature series - Technical data

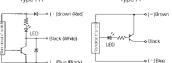
Technical specification

PRN Rotary Actuators	Unit	PRNA1S	PRNA3S	PRNA10S	PRNA20S	PRN30SE
Vane		Single vane	2	6.25.31.31		
Air condition	0		ricated or non-lul		00//00//070	00 / 100 / 070
Oscillating angle		90 / 180 / 270	, ,	90 / 180 / 270	90 / 180 / 270	90 / 180 / 270
Oscillating reference point	0	45, 90/45, 90/45		5 45, 90/45, 90/45	45, 90/45, 90/45	45
Port size		M5	M5	M5	M5	G1/8
Minimum operating pressure	bar	1,0	1,0	1,0	0,8	1,0
Operating pressure	bar	2 to 7	2 to 7	2 to 7	2 to 10	2 to 10
Operating temperature	°C	-5 to 80	-5 to 80	-5 to 80	-5 to 80	-5 to 60
Maximum operating frequency	cycles/mn	300 / 180 / 96	240 / 150 / 60	240 / 150 / 90	210 / 120 / 60	180 / 90 / 60
Internal volume	cm ³	1,4 / / 1,4 / 1,5	3,4 / 3,4 / 4	9,8 / 9,8 / 12	17 / 17 / 21	37 / 37 / 43
Allowable radial load	Ν	30	40	50	300	400
Allowable thrust load	Ν	3	4	4	25	30
Allowable energy	mJ	0.6	1.5	3	15	25
Weight	kg	0,036	0,070	0,140	0,250	0,47 / 0,47 / 0,46
PRN Rotary Actuators	Unit	PRNA1D	PRNA3D	PRNA10D	PRNA20D	PRN30DE
Vane		Double vane				
Air condition		Filtered (5µ) lub	ricated or non-lul	bricated		
Oscillating angle	0	90	90	90	90	90
Oscillating reference point	0	45	45	45	45	45
Port size		M5	M5	M5	M5	G1/8
Minimum operating pressure	bar	0.8	0.7	0.7	0.6	0.8
Operating pressure	bar	2 to 7	2 to 7	2 to 7	2 to 10	2 to 10
Operating temperature	°C	-5 to 80	-5 to 80	-5 to 80	-5 to 80	-5 to 60
Maximum operating frequency	cycles/mn	300	240	240	180	180
Internal volume	cm ³	1.1	2,8	8,1	15,0	34.0
Allowable radial load	N	30	40	50	300	400
Allowable thrust load	N	3	4	4	25	30
Allowable energy	mJ	0,6	1,5	3	15	25
Weight	kg	0,037	0,072	0,140	0,260	0,480

Notes:

- Maximum operating frequency is given at 5 bar operating pressure (unloaded).
- Make sure to use the PRN rotary actuators within the allowable energy. Check if the required energy is lower than the allowable energy. If not, use end stoppers directly on the load.
- The PRN with keyways are provided with keys.

Materials specification


PRN	PRNA3, PRNA10, PRNA20	PRNA1, PRN30
Body	Aluminium alloy	Aluminium alloy
Solid vane shaft	Steel + resin + Hydr. Nitrile	Steel + resin + Nitrile
Shoe	Resin	Resin
Shoe seal	Hydrogenated Nitrile	Nitrile
O-ring	Hydrogenated Nitrile	Nitrile
Screws, claw, stoppers, locknut	Steel	Steel

Effective torque (N.cm)

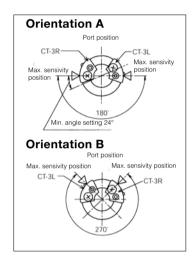
				Оре	erating	pressur	e (bar)			
	Model n°	2	3	4	5	6	7	8	9	10
Single vane	PRNA1S	4,9	7,6	10,1	12,9	15,6	18,5	-	-	-
	PRNA3S	10	17	24	31	38	45	-	-	-
	PRNA10S	35	56	75	98	120	139	-	-	-
	PRNA20S	59	95	133	170	210	249	287	326	368
	PRN30SE	110	180	250	319	410	480	580	650	720
Double van	ePRNA1D	10,4	16,5	22,5	28,6	34,7	41,1	-	-	-
	PRNA3D	25	39	54	71	86	101	-	-	-
	PRNA10D	76	117	162	211	254	303	-	-	-
	PRNA20D	140	222	306	388	470	553	633	717	807
	PRN30DE	270	440	600	770	950	1120	1299	1480	1660

Switch units specification

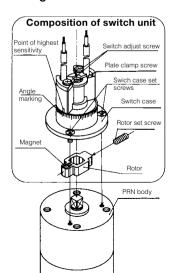
0. 21. 15 21. 1		
Switch unit type	FR-	FP-
Application	Relay, PLC,	
Output method	NPN	PNP
Mounting	Switch posit	ion adjustable
Operating voltage	DC5~30V	DC10~30V
Operating current	5 to 200mA	5 to 200mA
Indicating lamp	Lights up at	ON Consumption
20mA at	24V	14mA at 24V
10mA at 12V	7mA at 12V	4mA at 5V
Max.leakage curre	ent	10 μΑ
Internal voltage dr	op	1,5 V
Average operating	time	1 ms
Shock resistance		490m/s ²
Operating tempera	ature	5 to 60°C
Protection		IP67
I ead wire	1 m. 3 core.	oil resistant
Response range	,	23°+7°
Hysteresis		Approx. 2°
, 0.0.000		, .pp
Type FR-		Type FP-
- Maria Drown	Il book	+ (-)Densen

PRN Miniature series - Technical data

Oscillating Time range


	Oscillation time range (s)							
Model n°	90°	180°	270°					
PRNA1S	0,03 - 0,60	0,06 - 1,20	0,09 - 1,80					
PRNA3S	0,04 - 0,80	0,08 - 1,60	0,12 - 2,40					
PRNA10S	0,045 - 0,90	0,09 - 1,80	0,135 - 2,70					
PRNA20S	0,05 - 1,00	0,10 - 2,00	0,15 - 3,00					
PRN30SE	0,07 - 0,70	0,14 - 1,40	0,21 - 2,10					
PRNA1D	0,03 - 0,60	0,06 - 1,20	0,09 - 1,80					
PRNA3D	0,04 - 0,80	0,08 - 1,60	0,12 - 2,40					
PRNA10D	0,045 - 0,90	0,09 - 1,80	0,135 - 2,70					
PRNA20D	0,05 - 1,00	0,10 - 2,00	0,15 - 3,00					
PRN30DE	0,07 - 0,70	0,14 - 1,40	0,21 - 2,10					

Note: Operate the PRN rotary actuators within the range of duration mentioned in the above charts. Otherwise, the rotary actuator may move in stick-slip motion.


Switch mounting orientation

The 2 types of switches (-3L and -3R) included in the switch unit have to be oriented in accordance to the table herebelow:

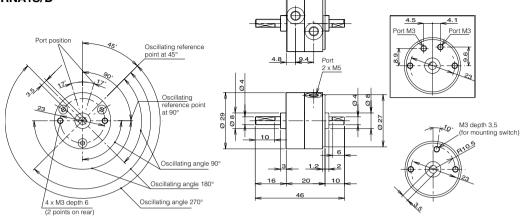
Oscillating angle	Orientation of switches
30° and 180°	А
270°	В

Setting the switch unit

Mount the switch unit on the body using the set of screws. For clamping torque, refer to the table below :

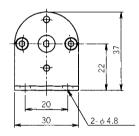
Clamping torque (N.cm)
20 to 30

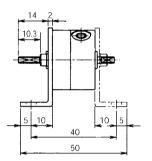
Adjusting the switch position


Loosen the switch adjust screws, make the point, at which the highest sensitivity is obtained, match with the angle marking equivalent to the actuator setting, and retighten the switch adjust screws at a clamping torque of 40 to 50 N.cm. Since the angle markings are provided just for reference, make a final adjustment by checking if the LED is on.

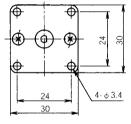
Replacing the switch

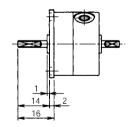
To remove the switch, remove the switch adjust screws and plate clamp screw. To mount a switch, reverse the procedure for removal. Adjust the switch position after completion of mounting.

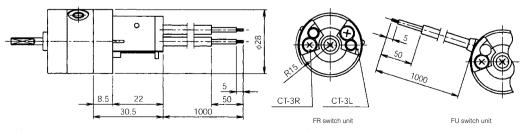




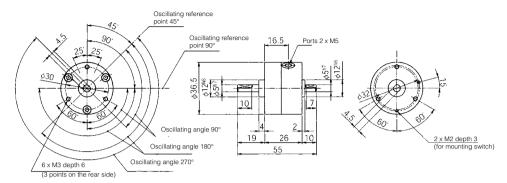
With foot plate mounting


Note:


A foot plate can be fitted turned by steps of 90° from the original position. Short shaft side: Example with 2 pcs.

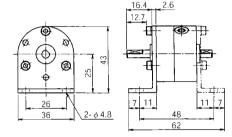


With flange plate mounting



Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.

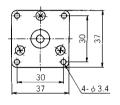
PRNA3S/D

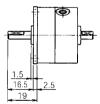


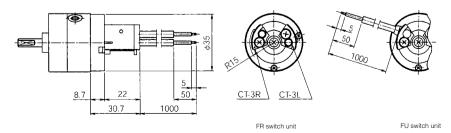
With foot plate mounting

Note:

A foot plate can be fitted turned by steps of 90° from the original position.

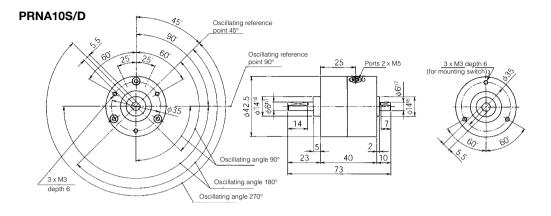

Short shaft side : Example with 2 pcs.



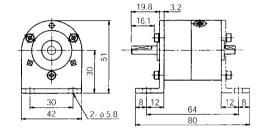

With flange plate mounting

Note:

A flange plate can be fitted turned by steps of 120° from the original position $\,$



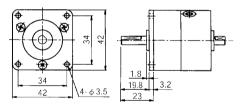
Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.

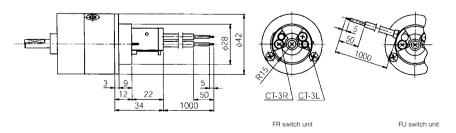


With foot plate mounting

Note:

A foot plate can be fitted turned by steps of 60° from the original position.

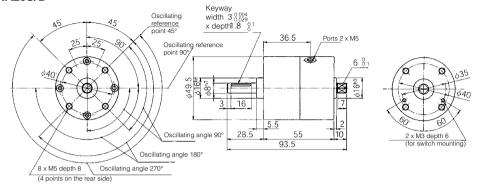

Short shaft side: Example with 2 pcs.



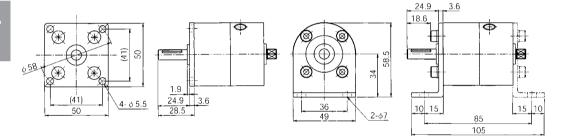
With flange plate mounting

Note:

A flange plate can be fitted turned by steps of 120° from the original position $\,$

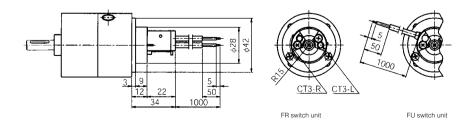


Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.



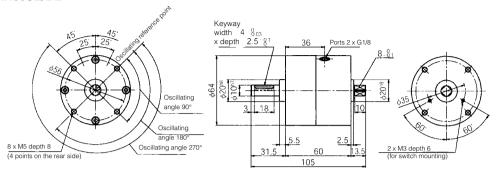
PRNA20S/D

With flange plate mounting

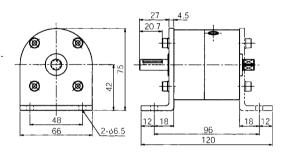

With foot plate mounting

Note:

A foot plate can be fitted turned by steps of 90° from the original position.

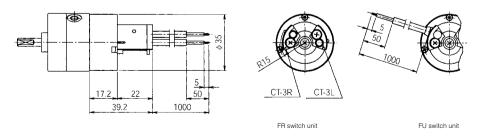

Short shaft side: Example with 2 pcs.

Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.


PRN30SE/DE

With flange plate mounting

\$\\ \frac{1}{52}\\ \dagger{4.\phi 5.5}\\ \frac{1.9}{27.9}\\ 3.6\\ \end{array}

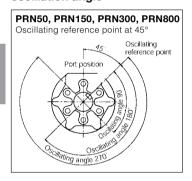

With foot plate mounting

Note:

A foot plate can be fitted turned by steps of $90\ensuremath{^\circ}$ from the original position.

Short shaft side: Example with 2 pcs.

Note: For switch unit-mounting hardware combinations, refer to the required dimensions in each fig.


PRN High Torque range - Fixed oscillating angle - Order Codes

Standard models

Model	Torque at 6 bar	Oscillating angle		
Single vane	(N.cm)	90°	180°	270°
(reference po	nt 45°)			
PRN50SE	590	PRN50SE-90-45	PRN50SE-180-45	PRN50SE-270-45
PRN150SE	1800	PRN150SE-90-45	PRN150SE-180-45	PRN150SE-270-45
PRN300SE	3450	PRN300SE-90-45	PRN300SE-180-45	PRN300SE-270-45
PRN800SE	12300	PRN800SE-90-45	PRN800SE-180-45	PRN800SE-270-45
Double vane (reference po	pint 45°)		
PRN50DE	1280	PRN50DE-90-45		
PRN150DE	4150	PRN150DE-90-45		
PRN300DE	8300	PRN300DE-90-45		
PRN800DE	24700	PRN800DE-90-45		

Oscillation starting point and oscillation angle

Rotary Actuator mountings

The mountings are provided with set screws

Rotary actuator Flange mounting Foot mounting	
PRN50SE/DE PRN50-P PRN50-L PRN150SE/DE PRN150-P PRN150-L PRN300SE/DE - PRN300-L PRN800SE/DE - PRN800-L	

Switch unit

Variable switch position, reed type or solid state type (NPN or PNP).

Hydro-cushion

Hydraulic cushion to use when the inertial energy exceeds that allowable by the actuator.

Maintenance kits

The maintenance kit consists in the vane shaft, shoe seal and shaft O'rings

For Rotary Actuator

Single vane		Double vane	
PRN50SE PRN150SE PRN300SE	PRN50S-PS PRN150S-PS PRN300S-PS	PRN50DE PRN150DE PRN300DE	PRN50D-PS PRN150D-PS PRN300D-PS
PRN800SE	PRN800S-PS	PRN800DE	PRN800D-PS

PRN High Torque range - Technical data

Technical specification

PRN High Torque Vane	Unit	PRN50SE Single vane	PRN150SE Single vane		PRN300SE Single vane	
Air condition	0	Filtered (5µ) lubricated or no			00 / 400 / 070	
Oscillating angle	0	90 / 180 / 270	90 / 180 / 270		90 / 180 / 270	
Oscillating reference point	0	45 / 45,40 / 45	45 / 45,40 / 45)	45 / 45,40 / 45)
Port size		G1/8	G1/4		G3/8	
Minimum operating pressure	bar	1,0	0,8		0,8	
Operating pressure	bar	2 to 10	2 to 10		2 to 10	
Operating temperature	°C	5 to 60	5 to 60		5 to 60	
Maximum operating frequency		180 / 90 / 60	120 / 80 / 50		90 / 60 / 40	
Internal volume	cm ³	51 / 51 / 61	146 / 146 / 17	9	244 / 283 / 35	2
Allowable radial load	N	588	1 176		1 960	
Alloowable thrust load	N	44,1	88,2		147,0	
Allowable energy	mJ	49,0	225,4		1 078,0	
Weight	kg	0,82 / 0,79 / 0,73	2,00 / 1,90 / 1	,70	3,70 / 3,70 / 3	,70
PRN High Torque	Unit	PRN800SE	PRN50DE	PRN150DE	PRN300DE	PRN800DE
Vane		Single vane	Double vane	Double vane	Double vane	Double vane
Air condition		Filtered (5µ) lubricated or no	n-lubricated			
Oscillating angle	0	90 / 180 / 270	90	90	90	90
Oscillating reference point	0	45 / 45,40 / 45	45	45	45	45
Port size		G1/2	G1/8	G1/4	G3/8	G1/2
Minimum operating pressure	bar	0,5	0,8	0,6	0,6	0,5
Operating pressure	bar	2 to 10	2 to 10	2 to 10	2 to 10	2 to 10
Operating temperature	°C	5 to 60	5 to 60	5 to 60	5 to 60	5 to 60
Maximum operating frequency	cycles/mn	65 / 45 / 30	180	120	90	65
Internal volume	cm ³	754 / 869 / 1 036	42	127	244	754
Allowable radial load	Ν	4 900	588	1 176	1 960	4 900
Allowable thrust load	Ν	490,0	44,1	88,2	147,0	490,0
Allowable energy	mJ	3 920,0	49,0	225,4	1 078,0	3 920,0
Weight	kg	12,70 / 12,20 / 11,20	0,82	2,00	4,30	12,70

Notes

- Maximum operating frequency is given at 5 bar operating pressure (unloaded).
- Make sure to use the PRN rotary actuators within the allowable energy. Check if the required energy is lower than the allowable energy. If not, use a CRN hydro-check (refer to page 25) or end stoppers directly on the load.
- . The PRN with keyways are provided with keys.

Materials specification

PRN	PRN50, PRN150	PRN300	PRN800
Body	Aluminium die casting alloy	Aluminium alloy	Aluminium alloy
Solid vane shaft	Structural steel alloy + Nitrile	Structural steel alloy + Nitrile	Structural steel alloy + Nitrile
Shoe	Zinc die casting alloy	Zinc die casting alloy	Zinc die casting alloy
Shoe seal	Nitrile	Nitrile	Nitrile
Damper	Uréthane	Uréthane	Uréthane
Bearing	=	-	Steel bearing
O-ring	Nitrile	Nitrile	Nitrile
Cover plate	=	-	Structural carbon steel
Screws, claw, stoppers, locknut	Steel	Steel	Steel

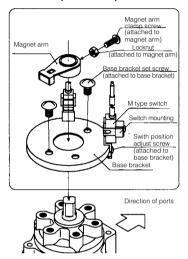
Effective torque (N.cm)

Oscillating time range (s)

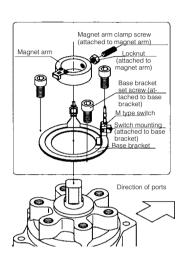
	Operating pressure (bar)											Oscillating	g angle	
	Model n°	2	3	4	5	6	7	8	9	10		90°	180°	270°
Single vane	PRN50SE	125	259	369	479	590	700	829	950	1060	PRN50	0.08~0.8	0.16~1.6	0.24~2.4
	PRN150SE	550	850	1150	1500	1800	2100	2400	2730		PRN150	0.12~1.2	0.24~2.4	0.36~3.6
	PRN300SE	1050	1650	2250	2850	3450	4050	4600	5180		PRN300	0.16~1.6	0.32~3.2	
	PRN800SE	3780	5910	8100	10200	12300	14400	16600	18600	20500				
Double vane	PRN50DE	330	579	829	1040	1280	1510	1760	2010	2250	PRN800	0.22~2.2	0.44~4.4	0.00~0.0
	PRN150DE	1250	1900	2700	3500	4150	4800	5500	6200	6900				
	PRN300DE	2550	3900	5400	6800	8300	9700	11000	12400	13700				
	PRN800DE	7740	12000	16100	20600	24700	28800	33200	37100	41100				

PRN High Torque range - Sensing

Order Codes

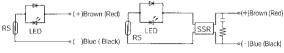

The switch unit consists in a 3-part mounting hardware combined with either a reed type or a solid state type sensors. The 3 parts hardware are to be ordered separately:

- Base braket
- · Magnet arm
- Switch mounting (except for PRN800)
 Switch units used with hydro-cushion

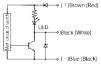

Standard mounting hardware for PRN

Rotary actuator	Base bracket	Magnet arm	Switch mounting
PRN50SE/DE	FM50-B	FM50-A	FM50-K
PRN150SE/DE	FM150-B	FM150-A	FM50-K
PRN300SE/DE	FM300-B	FM300-A	FM300-K
PRN800SE/DE	FM800-B	FM800-A	=

PRN50, PRN150, PRN300

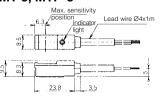


PRN800


Technical data

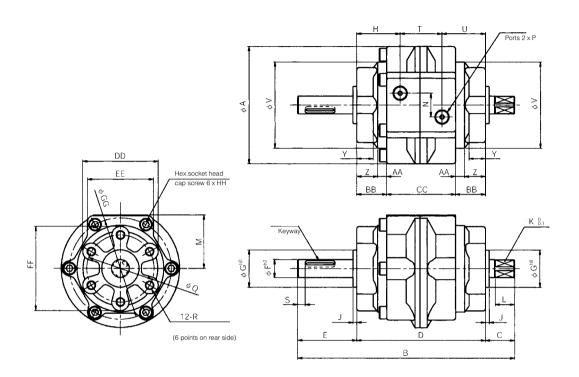
	MA-1	MA-2L	MA-2H	MT-3	MTP-3
Application	Relay, PLC	Relay	Relay	Relay, PLC, IC circuit	Relay, PLC, IC circuit
Output method	Reed switch	Reed switch	Reed switch	NPN	PNP
Operating voltage (V)	AC100 - DC24	AC100/110	AC200/220	DC 5 to 30	DC 10 to 30
Operating current (mA)	5 to 45	5 to 150	5 to 150	5 to 200	5 to 200
Indicating lamp	Red LED up at ON	Yellow LED up at ON			
	4,5VA-1W	4,5VA	4,5VA	20 mA at 24V	20 mA at 24V
Consumption				10 mA at 12V	10 mA at 12V
		Surge suppressor	Surge suppressor	4 mA at 5V	
Internal voltage drop	2 V or less	-	-	1,5 V or less	1,5 V or less
Max. leak current	-	-	-	10 μΑ	10 μΑ
Average operating time	1 ms	1 ms	1 ms	1 ms	1 ms
Shock resistance	294 m/s ²	294 m/s ²	294 m/s ²	490 m/s ²	490 m/s ²
Operating temperature	5 to 60 °C	5 to 60 °C			
Protection	IP67	IP67	IP67	IP67	IP67
Lead wire	1 m, 2-core	1 m, 2-core	1 m, 2-core	1 m, 3-core, oil resistant	1 m, 3-core, oil resistant
				o (+)Brown	(I)Brown (Red)

MA-1, MA-2



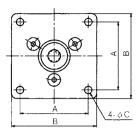
Dimensions (mm)

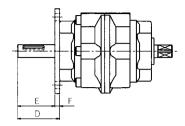
Indicator light 9 Max. sensitivity Lead wire position


MT-3, MTP-3

PRN High Torque range - Dimensions (mm)

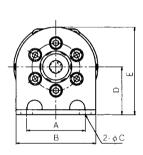
Standard model

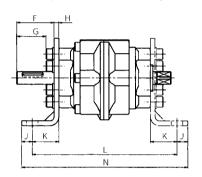



Туре	Α	В	С	D	E	F	G	Н	J	K	L	М	Ν	Р	Q	R	S	Т
PRN50	79,0	145	19,5	86	39,5	12	25	29,0	2,5	10	13	36	16	G1/8	45	M6x1 depth 9	5	28
PRN150	110,0	180	23,5	103	53,5	17	30	34,5	3,0	13	16	51	24	G1/4	70	M8x1,25 depth 1:	2 5	34
PRN300	141,5	220	30,0	125	65,0	25	45	41,5	3,5	19	22	66	32	G3/8	80	M10x1,5 depth 1	5 5	42
PRN800	196,0	285	44,5	171	69,5	40	70	53,5	4,5	32	35	90	44	G1/2	120	M12x1,75 depth	18 10	64
Type	Ш	V	Y	7	ΔΔ	BB	C	. DD	FF	FF	GG		н		Kevwav	, WxDxI		
	U 29.0	V 58.0	Y 11.0	Z 14.0	AA) 6.0	BB			EE 44.0		GG 68.0		HH M5x3			wxDxL x 2.5 ₀ +0.1x 20		
PRN50	29,0	58,0	Y 11,0 10,5	14,0	6,0	20,0 23,5) 46	5 51,0	EE 44,0 61,0	57,0	GG 68,0 97,0	N	НН И5х3 И6х3	0 L	Keyway 4 °-0,030 5 °-0.030	x 2,5 ₀ +0,1x 20		
Type PRN50 PRN150 PRN300	29,0 34,5	58,0 85,2	11,0	14,0 15,5	6,0 6,8,0	20,0	5 56	5 51,0 5 75,0	44,0	57,0 85,0	68,0	N	И 5х3	0 L 5 L	4 0-0,030	x 2,5 ₀ +0,1x 20		

PRN High Torque range - Dimensions (mm)

With flange plate

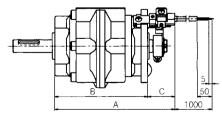


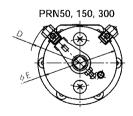


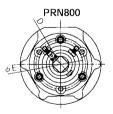
Type	Α	В	С	D	Е	F	
PRN50	64	80	7	39,5	35,0	4,5	
PRN150	88	110	9	53,5	47,5	6,0	

Note: A flange plate can be fitted turned by steps of 60° from the original position

With foot plate



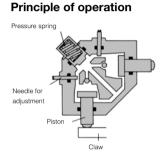


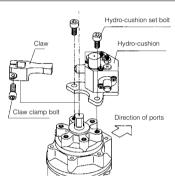

Туре	Α	В	С	D	Е	F	G	Н	J	K	L	Ν	
PRN50	55	75	11	45	82,5	35,0	27,5	4,5	10	25	136	156	
PRN150	80	110	13	65	115,0	43,5	33,5	10,0	12	28	159	183	
PRN300	100	140	15	80	135,0	53,0	40,5	12,0	13	32	189	215	
PRN800	140	200	15	110	200,0	54,5	39,5	15,0	15	35	241	271	

Note:A foot plate can be fitted turned by steps of 60° from the original position Short shaft side : Example with 2 pcs

With sensors

Туре	А	В	С	D	Е	
PRN50	115,0	87,2	25,5	R47	69	
PRN150	131,7	104,2	27,5	R61	97	
PRN300	161,2	126,2	35,0	R69	113	
PRN800	215,5	174,2	41,3	R60	108	


PRN High Torque range with Hydro-cushion

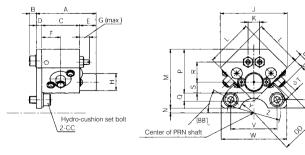

Order Codes

Hydraulic cushion for PRN high torque. Use these cushions when the inertial energy exceed the allowable energy of the PRN rotary actuator.

Hydro-cushion	Claw for hydro-cus	Claw for hydro-cushion - Oscillating angle						
	90°	180°	270°					
CRN50	CRN50-90-45-T	CRN50-180-45-T	CRN50-270-45-T					
CRN150	CRN150-90-45-T	CRN150-180-45-T	CRN150-270-45-T					
CRN300	CRN300-90-45-T	CRN300-180-45-T	CRN300-270-45-T					
CRN800	CRN800-90-45-T	CRN800-180-45-T	CRN800-270-45-T					
CRN50	CRN50-90-45-T							
CRN150	CRN150-90-45-T							
CRN300	CRN300-90-45-T							
CRN800	CRN800-90-45-T							
	CRN50 CRN150 CRN300 CRN800 CRN50 CRN50 CRN150 CRN300	90° CRN50 CRN50-90-45-T CRN150 CRN150-90-45-T CRN300 CRN300-90-45-T CRN800 CRN800-90-45-T CRN50 CRN50-90-45-T CRN150 CRN150-90-45-T CRN300 CRN300-90-45-T	90° 180° CRN50 CRN50-90-45-T CRN50-180-45-T CRN150 CRN150-90-45-T CRN300-180-45-T CRN300 CRN300-90-45-T CRN300-180-45-T CRN800 CRN800-90-45-T CRN800-180-45-T CRN50 CRN50-90-45-T CRN150 CRN150-90-45-T CRN300 CRN300-90-45-T					

Specification

	Unit	CRN50	CRN150	CRN300	CRN800
Applicable Rotary Actuator		PRN50	PRN150	PRN300	PRN800
Load range	kg x cm ²	981	2942	5884	19613
Maximum absorbtion energy	mJ	2942	9807	19613	58840
Max. collision angular velocity	°/s	850	750	650	550
Max.energy capacity per mn	mJ/mn	19613	70613	137293	353039
Operating temperature	°C	5 to 50	5 to 50	5 to 50	5 to 50
Absorbing angle (one end)	0	11	12	14	15
Weight	kg	0,240	0,420	0,780	1,620


Note:

Energy capability per mn = Absorbing energy x 2N

N: Operation frequency (cycle/mn)

When a rotary actuator is used with a hydro-cushion, keep an operating pressure of 3 bar or more.

Dimensions (mm)

Model N°	Α	В	С	D	Ε	F	G	Н	J	K	L	М	Ν	Ρ	Q	R	S	Τ	U	٧	W	Υ	Z	AA	ВВ	CC	DD	EE
CRN50	50,	5 6,0	32	4,5	14	16	8,5	14,4	56,6	9,9	40	50	4	37	7,1	17,0	9,2	8	7,2	39,0	56	R12,5	R45	6,5	30	M6x12	34	8,0
CRN150	56,	5 7,2	36	4,5	16	18	8,5	18,4	70,7	11,3	50	62	9,5	49	8,4	25,5	11,4	10	8,0	60,6	80	R15	R70	10,0	30	M8x16	46	12,0
CRN300	62,	5 7,2	42	4,5	16	21	12,0	22,5	91,9	12,7	65	87	8	61	14,2	33,2	14,1	12	12,0	69,2	95	R22,5	R80	15,0	30	M10x20	62	18,0
CRN800	73,	7,2	50	6,0	17	25	12,0	32,5	127,0	14,2	90	118	17	82	24,7	46,7	20,6	16	13,0	103,9	130	R35	R120	24,0	30	M12x20	90	27,5

Stroke AA

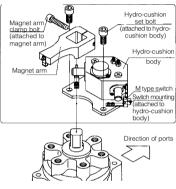
PRN High Torque range with Hydro-cushion - Sensors

Order Codes


Standard mounting hardware for PRN

Rotary	Base	Magnet arm - O	scillating angle		Switch
actuator	Bracket	90°	180°	270°	mounting
PRN50SE	FM50-B	FC50-90-45-T	FC50-180-45-T	FC50-270-45-T	FC50-K
PRN150SE	FM150-B	FC150-90-45-T	FC150-180-45-1	FC150-270-45-T	FC50-K
PRN300SE	FM300-B	FC300-90-45-T	FC300-180-45-1	FC300-270-45-T	FC300-K
PRN800SE*	CRN800-FC	FC800-90-45-T	FC800-180-45-1	FC800-270-45-T	-
PRN50DE	FM50-B	FC50-90-45-T			FC50-K
PRN150DE	FM150-B	FC150-90-45-T			FC50-K
PRN300DE	FM300-B	FC300-90-45-T			FC300-K
PRN800DE*	CRN800-FC	FC800-90-45-T	•		-

The switch unit used with a CRN hydro-cushion consists in a 3-part mounting hardware combined with either a reed type or a solid state type sensors. The 3 parts hardware are to be ordered separately:


- Base braket
- Magnet arm
- Switch mounting (except for PRN800)

PRN50, PRN150, PRN300

PRN800

* When used with sensors, order CRN800-FCwith included sensors mountings

MTP-3

DC 10 to 30

20mA at 24V

10mA at 12V

1,5 V or less

4mA at 5V

10 µA

490 m/s²

1 ms

5 to 200

PNP

Relay, PLC, IC circuit

Yellow LED up at ON

Technical data

Application Output method Operating voltage (V) Operating current (mA) Indicating lamp
Consumption

Internal voltage drop Max. leak current Average operating time Shock resistance Operating temperature Protection Lead wire

1 m, 2-core (+)Brown (Red) (-)Blue (Black)

MA-1

5 to 45

Relay, PLC

4.5VA - 1W

2 V or less

294 m/s²

5 to 60 °C

1 ms

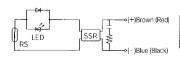
IP67

Reed switch

AC100 - DC24

MA-2L Relav

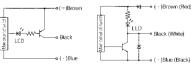
Reed switch AC100/110 5 to 150 4.5VA


Reed switch AC200/220 5 to 150 Red LED up at ON Red LED up at ON Red LED up at ON 4.5VA

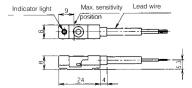
MA-2H

Relav

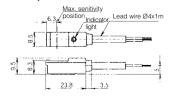
Surge suppressor


1 ms 1 ms 294 m/s² 294 m/s² 5 to 60 °C 5 to 60 °C IP67 IP67 1 m, 2-core 1 m, 2-core

MT-3

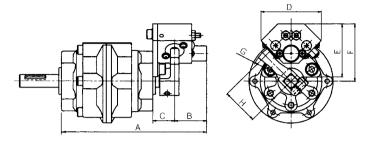

Relay, PLC, IC circuit NPN DC 5 to 30 5 to 200 Red LED up at ON 20mA at 24V 10mA at 12V Surge suppressor 1,5 V or less 10 µA 1 ms 490 m/s²

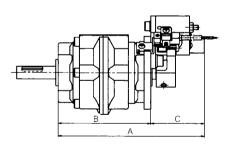
5 to 60 °C 5 to 60 °C IP67 IP67 1 m, 3-core, oil resistant 1 m, 3-core, oil resistant

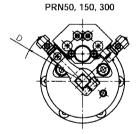


Dimensions (mm)

MA-1, MA-2


MT-3, MTP-3


PRN High Torque range with Hydro-cushion - Dimensions (mm)


PRN with hydro-cushion

Туре	А	В	С	D	Ε	F	G	Н	
PRN50	136,5	30	20,5	56	50	54,0	R38	34	
PRN150	159,5	34	22,5	80	62	71,5	R51	46	
PRN300	187,5	37	25,5	95	87	96,0	R68	62	
PRN800	244,0	42	31,0	130	118	135,0	R78	90	

PRN with hydro-cushion and switch unit

Туре	А	В	С	D	
PRN50	137,7	87,2	50,5	R58,2	
PRN150	160,7	104,2	56,5	R72,2	
PRN300	188,7	126,2	62,5	R88,2	
PRN800	244,0	174,2	69,8	R118,5	

Note: For switch unit mounting hardware or hydro-cushion combinations, refer to the required dimensions in each fig.

Selecting a pneumatic Rotary Actuator

Step 1: Selecting the size of the Rotary Actuator

When a simple static force is required (such as clamping force)

Determine the required force, arm length from actuator and operating pressure.

 $\begin{array}{lll} \mbox{Required force} & \mbox{F(N)} \\ \mbox{Arm length from actuator} & \mbox{I (m)} \\ \mbox{Operating pressure} & \mbox{P(bar)} \\ \end{array}$

3. Compare the effective torque Th of the actuator under the operating pressure with the required one Ts.

Select a rotary actuator with: Th > Ts

2. Calculate the required torque

 $Ts = F \times I \quad (N.m)$ Required force F(N)Arm length from actuator I(m)

When a the load is moving

The required torque for moving a load is the total of resistance torque and acceleration torque.

The resistance torque is the sum of friction, gravity and external force and torques.

The acceleration torque is provided to accelerate the load to certain speed against inertia.

1. Calculating the resistance torque Tr

 a) Determine the resistance force, arm length from actuator and operating pressure.

Required force F(N)
Arm length from actuator I (m)
Operating pressure P(bar)

b) Calculate the resistance torque Tr

exists

load

Balanced

 $Tr = k \times F \times I (N.m)$

k = 2 when there is no load variation

k = 5 when there is a load variation

<u>Note:</u> When there is a load variation, if k<5, the angular velocity increases and thus smooth operation cannot be obtained

Calculating the resistance torque	Horizontal load	Vertical load			
Required	External force Balanced load Unbalanced load	Load resistance exists External force Unbalanced load Balanced load Unbalanced Gravity load			
	No load resistance	No load resistance exists			

Unbalanced load Balanced load

2. Calculating the acceleration torque Ta

a) Determine the oscillating angle and ocillating time t.
 Occillating time is the time required for the vane to operate from starting point to the oscillation end.

Oscillating angle (rad) $90^{\circ} = 1.5708 \text{ rad}$

 $180^{\circ} = 3.1416 \text{ rad}$

 $270^{\circ} = 4.7124 \text{ rad}$

Oscilating time t(s)

b) Calculate the moment of inertia

The moment of inertia is determinated from the shape and the mass of the load.

Moment of inertia J (kg.m²)

c) Calculating angular acceleration

 $\alpha = \theta / t^2$ (rad/s²) θ (rad) : Oscillating angle t (s) : Oscilating time

d) Calculating acceleration torque Ta

 $Ta = 5 \times J \times \alpha \quad (N.m)$

J: Moment of inertia of the load (kg.m²)

α: Angular acceleration (rad/s²)

3. Calculating the required torque Ts

Ts = Tr + Ta (N.m)

Tr : Resistance torque (N.m)

Ta: Acceleration torque (N.m)

4. Compare the effective torque Th of the actuator under the operating pressure with the required one Ts.

Select a rotary actuator with: Th > Ts

Not required

Selecting a pneumatic Rotary Actuator

Step 2: Checking the oscillating time

Step 3: Checking the allowable energy

On the inertia matter, use the rotary actuator so that the inertial energy is lower than the allowable energy of the rotary actuator. Check as indicated here after:

1. Calculate the angular velocity ω

 $\omega = \theta / t \text{ (rad/s)}$ $\theta \text{ (rad)}: Oscillating angle }$ $t \text{ (s)}: Oscillating time}$

2. Calculate the inertial energy of the load E

E = $1/2 \times J \times \omega^2$ (J) J: Moment of inertia of the load (kg.m²) ω : Angular velocity (rad/s)

Check if the inertial energy E is within the allowable energy indicated in the specifications of each actuator.

Note:

If the inertial energy exceeds the allowable energy, the actuator may be damaged. Therefore, it is necessary to take the following measures:

- Select a larger size the allowable energy of which is higher than the energy required
- Slow down the oscillating time
- Use a hydro-cushion CRN (high torque PRN)
- Fit a cushion or other shock absorber directly on the load side.

Selecting a hydro-cushion CRN

- 1. Calculate the moment of inertia by the shape and mass of the load, and make sure that it is within the allowable energy of the hydro-check
- 2. Make sure that the collision angular velocity is less than the maximum allowable

 $\omega_0 = 1.2 \times \omega \ (^{\circ}/\text{s})$ ω : Mean angular velocity ($^{\circ}/\text{s}$)

3. Calculate the collision energy from the load and the collision angular velocity

E1 = $1/2 \times J \times \omega_0^2$ (J) J: Moment of inertia (kg.m²)

 ω_0 : Collision angular velocity (rad/s) 1° = 0.0174 rad

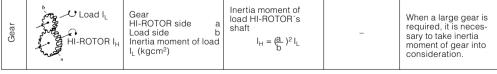
4. Find the energy generated from the torque of the actuator

 $E2 = 1/2 \times T \times \theta \quad (J)$

- T : Torque of the rotary actuator (N.m) $\,$
- θ : Absorbtion angle of the cushion (one side)
- 5. Check that E1 + E2 is equal or less than the maximum absorbstion energy

6. Find the energy per minute from $% \left(n\right) =\left(n\right) +\left(n\right)$

Em = 2 x N x (E1+E2) (J/mn) N : operation frequency (mn)


7. Make sure that Em is equal or less than the maximum energy capacity per mn

Reference data for selecting HI-ROTOR

Calculating the moment of inertia

Shape	Sketch	Requirement	nertia moment I (kgcm²)	Radius of gyration	Remarks
Disc	- 1 h	Diameter d (cm) Mass m (kg)	I = <u>d²</u> m⋅ 8	<u>d²</u> 8	
Stepped disc	di di	Diameter d ₁ (cm) d ₂ (cm) Mass portion d ₁ m ₁ (kg) portion d ₂ m ₂ (kg)	$I = m_1 \cdot \frac{d_1^2}{8} + m_2 \cdot \frac{d_2^2}{8}$	_	When portion d_2 is much smaller than portion d_1 , value of d_2 is negligible.
Bar (with rotating- center at the end)	C	Bar length & (cm) Mass m (kg)	$I = m \cdot \frac{\ell^2}{3}$	<u>£</u> ²	If the ratio of the bar width: length is over 0.3, use formula for rectangle.
Rectangular parallelepiped		Side length a (cm) b (cm)Distance between the center of gravity and rotation ℓ (cm) Mass m (kg)	$I = m \left(\ell^2 + \frac{a^2 + b^2}{12} \right)$	$\ell^2 = \frac{a^2 + b^2}{12}$	
Bar (with rota- tingcenter at the		Bar length & (cm) Mass m (kg)	$I = m \cdot \frac{\ell^2}{12}$	£ ² 12	If the ratio of the bar width: length is over 0.3, use formula for rectangle.
Rectangular parallelepiped		Side length a (cm) b (cm) Mass m (kg)	$I = m \cdot \frac{a^2 + b^2}{12}$	a ² +b ² 12	
Concentrated load	Concentrated load m ₁	<pre>ℓ (cm) Mass of concentrated load m₁ (kg) Mass of arm m₂ (kg)</pre>	$I = m_1 \cdot \ell^2 + m_1 \cdot K_1^2 + m_1^2 \cdot \frac{\ell^2}{12}$ Case of disc $K_1^2 = \frac{d^2}{8}$	K ₁ ² : Select from above this column	If m_2 is much smaller than m_1 , assume m_2 to be 0 for calculation.
How to	convert the inertia of lo	ad applied through gear	s "I _L " for HI-ROTOR's sha	ft	
	b		Inartia mamont of		

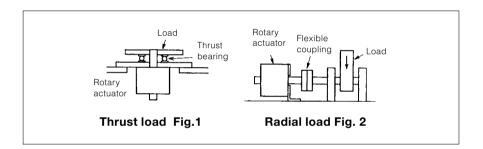
Rotary Actuators - Common instructions

Installation

The Rotary Actuators should be installed according to the rules of safe use of compressed air and the general rules relating to systems, especially the European Machinery Directive.

Do not apply excessive stress to the shaft.

1. Heavy thrust load should be avoided


When the thrust load is higher than the allowable thrust load prescribed in the specifications, please use a bearing as shown in fig. 1.

2. Heavy radial loads should be avoided

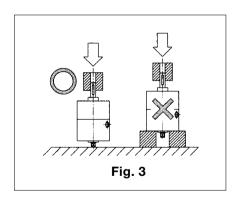
When the radial load is higher than the allowable radial load prescribed the specifications, please use flexible coupling as shown in fig. 2.

3. Check the allowable energy

If the impact energy is higher than the allowable energy, use a CRN hydro-cushion or external stoppers operating directly on the load.

Do not hit the shaft when the body is fixed or the body when the shaft is fixed.

When mounting a load or couplings on the shaft, set the rotary actuator in such a way that the body does not receive any force, as shown in the Fig. 3.


Lubrication

The rotary actuators listed in this catalogue operate non-lubricated.

This product is design to be used with non-lubricated air, however, they may be used with or without lubricated air. When used with lubricated air, this must be continued as the original lubricant may have run off, which could result in operation failure.

When using a lubricant, Class 1 turbine oil ISO VG32 (containing additive) is recommended. Do not use spindle oil and machine oil, that may damage the seals.

